skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2027
  2. Collaboration is highly emphasized in engineering design education. While it offers various advantages in fostering learning and professional development, it is imperative to acknowledge the adverse factors that can disrupt collaborative efforts. By far, one of the most frequently cited challenges in student teamwork is perceived contribution inequity, which often leads to frustration during collaboration and strains peer relationships. Much work has been done to investigate effective team collaboration. Still, few studies have empirically delved into perceived contribution fairness or contribution equity from the lens of team diversity in engineering design. This study aims to investigate the complex relationship between team diversity (in terms of differences in gender composition and self-perceptions about one’s ability and interests) and contribution equity in student teams. Data were collected from 26 teams in a sophomore-level engineering design course across two semesters. Findings suggest that gender-diverse teams demonstrated a higher tendency for contribution fairness, whereas teams with greater homogeneity in design interests and teamwork preferences were more likely to contribute fairly. These results highlight the importance of a strategic approach to team formation, considering diversity dimensions to promote equitable collaboration in engineering design education. 
    more » « less
    Free, publicly-accessible full text available August 17, 2026
  3. Abstract CRISPR–Cas9 (clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9) has been revolutionizing genome engineering, and in-depth understanding of mechanisms governing its DNA discrimination is critical for continuing technology advances. An arginine-rich bridge helix (BH) connecting the nuclease lobe and the recognition lobe, which is conserved across the Cas9 family, exists in a helix–loop–helix conformation in the apo wild-type protein but converts to a long contiguous helix in the Cas9/RNA binary complex. In this work, distances measured with spin labels were utilized to investigate BH’s conformational transitions in the solution state upon single-guide RNA (sgRNA) binding, which is a critical early event preceding DNA binding and cleavage. Analyses show that sgRNA binding drives BH conformational changes in the wild-type SpyCas9 (SpyCas9WT) as well as in two BH-loop variants, SpyCas92Pro and SpyCas92Ala. Each Cas9–sgRNA binary complex, however, exhibits distinct BH features that reveal mutation-specific effects on helical integrity versus side-chain interactions. In addition, the BH conformational variations can be correlated to the observed changes in the mismatch cleavage profiles of the Cas9 variants. The work represents the first use of distances measured by site-directed spin labeling to investigate Cas9 protein conformational changes in the solution state and advances our understanding on the structure–dynamic–function relationship governing DNA target discrimination by Cas9. 
    more » « less
  4. Disrupted iron balance causes anemia and iron overload leading to hypoxia and systemic oxidative stress. Iron overload may arise from red blood cell disorders such as sickle cell disease, thalassemia major and primary hemochromatosis, or from treatment with multiple transfusions. These hematological disorders are characterized by constant red blood cell hemolysis and the release of iron. Hemolysis is a continuous source of reactive oxygen species whose accumulation changes the redox potential in the erythrocyte, the endothelium and other tissue causing damage to organ systems. Iron overload and its consequences can be treated with iron chelating therapy. We have carried out structural studies of small molecule ligands that were previously reported for their iron chelating ability. The chelators were analyzed using mass spectrometry, proton nuclear magnetic resonance and infrared spectroscopy. The iron chelators, 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone, 3-ethyl-1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}thiourea and 1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}-3-(prop‑2-en-1-yl)thiourea in their unbound conformation were crystallized and their structures were determined. This work addresses the evolution of a thiosemicarbazone class of iron chelators by analyzing and comparing the structure and properties of a series of closely related molecules, relating these to their in vitro activity thus providing valuable update to the search for newer, better and more effective iron chelators and metal-based therapeutics. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  5. NA (Ed.)
    Over the past three decades, assessments of the contemporary global carbon budget consistently report a strong net land carbon sink. Here, we review evidence supporting this paradigm and quantify the differences in global and Northern Hemisphere estimates of the net land sink derived from atmospheric inversion and satellite-derived vegetation biomass time series. Our analysis, combined with additional synthesis, supports a hypothesis that the net land sink is substantially weaker than commonly reported. At a global scale, our estimate of the net land carbon sink is 0.8 ± 0.7 petagrams of carbon per year from 2000 through 2019, nearly a factor of two lower than the Global Carbon Project estimate. With concurrent adjustments to ocean (+8%) and fossil fuel (−6%) fluxes, we develop a budget that partially reconciles key constraints provided by vegetation carbon, the north-south CO2gradient, and O2trends. We further outline potential modifications to models to improve agreement with a weaker land sink and describe several approaches for testing the hypothesis. 
    more » « less
    Free, publicly-accessible full text available September 12, 2026
  6. Opening up data produced by the Internet of Things (IoT) and mobile devices for public utilization can maximize their economic value. Challenges remain in the trustworthiness of the data sources and the security of the trading process, particularly when there is no trust between the data providers and consumers. In this paper, we propose DEXO, a decentralized data exchange mechanism that facilitates secure and fair data exchange between data consumers and distributed IoT/mobile data providers at scale, allowing the consumer to verify the data generation process and the providers to be compensated for providing authentic data, with correctness guarantees from the exchange platform. To realize this, DEXO extends the decentralized oracle network model that has been successful in the blockchain applications domain to incorporate novel hardware-cryptographic co-design that harmonizes trusted execution environment, secret sharing, and smart contract-assisted fair exchange. For the first time, DEXO ensures end-to-end data confidentiality, source verifiability, and fairness of the exchange process with strong resilience against participant collusion. We implemented a prototype of the DEXO system to demonstrate feasibility. The evaluation shows a moderate deployment cost and significantly improved blockchain operation efficiency compared to a popular data exchange mechanism. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  7. A<sc>bstract</sc> We discuss a no-boundary proposal for a subregion of the universe. In the classical approximation, this density matrix involves finding a specific classical solution of the equations of motion with no boundary. Beyond the usual no boundary condition at early times, we also have another no boundary condition in the region we trace out. We can find the prescription by starting from the usual Hartle-Hawking proposal for the wavefunction on a full slice and tracing out the unobserved region in the classical approximation. We discuss some specific subregions and compute the corresponding solutions. These geometries lead to phenomenologically unacceptable probabilities, as expected. We also discuss how the usual Coleman de Luccia bubble solutions can be interpreted as a possible no boundary contribution to the density matrix of the universe. These geometries lead to local (but not global) maxima of the probability that are phenomenologically acceptable. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Artificial spin ice, arrays of strongly interacting nanomagnets, are complex magnetic systems with many emergent properties, rich microstate spaces, intrinsic physical memory, high-frequency dynamics in the GHz range, and compatibility with a broad range of measurement approaches. This Tutorial article aims to provide the foundational knowledge needed to understand, design, develop, and improve the dynamic properties of artificial spin ice. Special emphasis is placed on introducing the theory of micromagnetics, which describes the complex dynamics within these systems, along with their design, fabrication methods, and standard measurement and control techniques. The article begins with a review of the historical background, introducing the underlying physical phenomena and interactions that govern artificial spin ice. We then explore the standard experimental techniques used to prepare the microstate space of the nanomagnetic array and to characterize magnetization dynamics, both in artificial spin ice and more broadly in ferromagnetic materials. Finally, we introduce the basics of neuromorphic computing applied to the case of artificial spin ice systems with a goal to help researchers new to the field grasp these exciting new developments. 
    more » « less
    Free, publicly-accessible full text available August 14, 2026
  9. Free, publicly-accessible full text available July 30, 2026
  10. Societal Impact StatementForest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects on modeled forest land carbon stocks are strongest in tropical wildlands that have limited human influence. Global forest carbon stocks and carbon sink strength may decline as climate change and anthropogenic influences intensify, with wildland tropical forests, especially in Amazonia, likely being especially vulnerable. SummaryHuman effects on ecosystems date back thousands of years, and anthropogenic biomes—anthromes—broadly incorporate the effects of human population density and land use on ecosystems. Forests are integral to the global carbon cycle, containing large biomass carbon stocks, yet their responses to land use and climate change are uncertain but critical to informing climate change mitigation strategies, ecosystem management, and Earth system modeling.Using an anthromes perspective and the site locations from the Global Forest Carbon (ForC) Database, we compare intensively used, cultured, and wildland forest lands in tropical and extratropical regions. We summarize recent past (1900‐present) patterns of land use intensification, and we use a feedback analysis of Earth system models from the Coupled Model Intercomparison Project Phase 6 to estimate the sensitivity of forest carbon stocks to CO2and temperature change for different anthromes among regions.Modeled global forest carbon stock responses are positive for CO2increase but neutral to negative for temperature increase. Across anthromes (intensively used, cultured, and wildland forest areas), modeled forest carbon stock responses of temperate and boreal forests are less variable than those of tropical forests. Tropical wildland forest areas appear especially sensitive to CO2and temperature change, with the negative temperature response highlighting the potential vulnerability of the globally significant carbon stock in tropical forests.The net effect of anthropogenic activities—including land‐use intensification and environmental change and their interactions with natural forest dynamics—will shape future forest carbon stock changes. These interactive effects will likely be strongest in tropical wildlands. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026